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LElTER TO THE EDITOR 

A class of 6-1 symbols for S0(21+ 1) in terms of rotation 
matrices for SO(3) 

B R Judd 
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, 
Maryland 21218, USA 

Received 20 January 1987 

Abstract. It is shown that a 6-j  symbol for S0(2[+1)  in which four primitive spinor 
representations (f i .  . .+) appear is directly related to an SO(3) rotation matrix possessing 
a rank of I + ;  and characterised by the Euler angles (0, fv, 0). An interpretation is given 
in terms of a rotation operator exp(fiaT,.) acting in the combined spin and quasispin space 
of an atomic 1 shell, whose states IT, Mf) are defined in a quasiparticle scheme in which 
four coupled spinors (4 f . . . f )  are used. 

It was O'Brien (1984) who noticed that some multiplicity-free 6-j symbols for S0(5),  
calculated numerically by Lister (1983) for an octahedral Jahn-Teller system, could 
be represented by quite simple algebraic formulae. Several ways of obtaining such 
formulae have been developed. Racah (1942) originally introduced his W function 
(an unsymmetrised 6-j symbol) to represent the matrix elements of scalar tensor 
products of the type CT' - C',"', and his equations have been generalised to yield 
formulae for a variety of multiplicity-free 6-j symbols for S0(21+ l),  G2, and Sp(2j + 1) 
(Judd et al 1986, Suskin 1987). By elaborating the spinor invariants of Kramers (1930), 
Judd and Lister (1987) were able to find a large class of multiplicity-free 9-j symbols 
for Sp(2j + 1)  in terms of a generating function similar to that of Schwinger (1965) for 
SO(3). In the process of searching for methods that might complement such 
approaches, a striking formula was found for some 6-j symbols for S0(21+1) that 
involve the primitive representation with highest weight (i') (that is, a weight (i 4. . . 4) 
in which l coordinates f appear). If we multiply the 6-j symbol by ( 0 3 0 6 ) 1 ' 2 ,  where 
D3 and 0 6  are the dimensions of the representations in its third column, thereby 
converting it into a U function of the type introduced for SO(3) by Jahn (1951), the 
formula becomes 

where 

M = ( - l )"(m+f)  N = ( - l )"(n  +f) 
and where d:fv-l'(p) is the familiar matrix for a rotation of p about the y axis in 
ordinary three-dimensional space (Brink and Satchler 1968, p 22). The U function 
appearing in ( 1 )  can be written as the recoupling coefficient 
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without, however, making the rationale for the existence of equation ( 1 )  any clearer. 
For reference purposes, numerical values are set out in table 1 for S0(7 ) ,  corresponding 
to 1 = 3 .  

It is not too difficult to derive equation (1). On picking m = I ,  the representation 
(l'-"'O"') becomes the scalar (O'), and the U coefficient can be related to a stretched 
recoupling coefficient that is equal to 1. The intervening factor is proportional to 
( D (  W))"', where D( W ) ,  the dimension of the representation W, is given by 

D( 1'-"0") = (21+ l ) ! / (I+ 1 + n ) !  ( I  - n ) !  (4) 

in the present case. The entries in the first column of the U table can be immediately 
written down by dividing [D(l'-"O")]1/2 by the normalising coefficient 2'. The third 
column can be found by generalising Racah's scalar Cf' * C',"' to TA .TB, where T A  

and TB are two separate (and commuting) sets of generators for S0(21+ 1 ) .  Each set 
corresponds to the irreducible representation (110.. . O )  of S0(21+ l ) ,  and the eigen- 
values of TA . TB for the coupled state I((;')(;'))( l'"'0")) are proportional, on the one 
hand, to U'(2, n)[ D( 120'-2)D( 1'-"On)]-1/2 (the dimensional factor taking into account 
the difference between the U coefficient and the 6-j  symbol), and, on the other hand, 
to the combination GA+B - GA - GB of Casimir's operators, a combination whose 
eigenvalues are themselves proportional to 

( 5 )  

that is, to N2-d(21+ 1 ) .  The appropriate coefficient connecting U'(2, n) to ( 5 )  can be 
found by insisting that U,(2,0) = U'(0, 2). Orthogonality between U'(2, n )  and U,(O, n) 
provides a check. Passing now to the fifth column, we note that (TA - TB)' contains 
parts of the form Vkw' - V',"' for which W = (220'-2), (2120'-3), and (20'-'), (See, for 
example, Wybourne (1970, tables 0 - 6  and D-7).) Operators Vi"' - V',"' with such 
labels are ineffective because all three W do not occur in the Kronecker square (i')2, 
and hence have null matrix elements. We are left with W = (O'), ( 120'-2), and ( 140'-4), 
some mixture of which must yield the square of the expression (5). It is now obvious 

as matrix elements proportional to some linear 
combination A + B N 2  + CN4. Orthogonality between the fifth column and the first 
and third yields the relative values of A, B, and C. We can proceed in this way to 
calculate all the values of U,(m, n )  for which m = I, 1-2, 1-4, . . . , 1 or 0. Having 
found the entries in the odd columns (and, from the imposed symmetry of Ul(m, n), 

( I -  n ) ( f +  n + 1)41(21+ 1 )  -iI(21+ 1 )  

that an operator V ~ I l 1 0 . . . 0 )  . V(1lllo...o) h 
B 

Table 1. The functions 

for SO(7).  Values of the corresponding 6-j symbols can be found by dividing by 
[D( W ) D (  W')]Il2. 

5 3 I  M - I  2 - I  I 
w (000) (100) (110) (111) 

N W' D ( W )  1 7 21 35 

-; (0w) 1/8 7Il2/8 (2 1)'12/8 (35) ' l2 /8  
; (100) 7'12/8 -5/8 (27)'12/8 -5'12/8 
-; (110) (21)'/'/8 (27)'12/8 1/8 -( 15)1'2/8 

4 (111) (35)'12/8 -5''2/8 -(15)'/*/8 318 
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the odd rows as well), we are left with the entries in the simultaneously even rows and 
columns to work out. The linear independence of the odd columns makes it clear that 
the orthogonality conditions alone are enough to lead to unambiguous solutions for 
the remaining entries that we need. If a solution can be guessed for the even-even 
sites of the U matrix, and if all the orthogonality conditions are satisfied, the solution 
is correct. Since the odd columns involve even powers of N it is natural to try odd 
powers of N for the even columns; and this is indeed how things work out. For 
example, the second column of table 1 is proportional to N [ D (  W)]'/2 and the fourth 
to (N3-9N)[D( W)]'l2. Having established the general structure of the table of U 
coefficients, we can turn to standard mathematical procedures to find explicit algebraic 
forms for the entries. This involves converting the orthogonality conditions to recur- 
rence relations, expressing the latter in terms of generating functions, and then finding 
the differential equation satisfied by these functions. It was only when the last stages 
of this work was being carried out that the close connection of the U matrices to the 
rotation matrices of S 0 ( 3 ) ,  as represented by equation (I), was recognised. 

The connection between such dissimilar quantities as Uf(m, n) and dGz2(&r)  must 
lead to parallelisms between the various relations that they separately satisfy. The 
orthogonality of the matrix U,( m, n) corresponds to that of each quarter of the matrix 
dLMN(p)  when j is half-integral and p =+v. More interesting is the so-called Racah 
back-coupling relation (Brink and Satchler 1968, equation 3.21, Edmonds 1957, 
equation 6.2.11) which, for our U functions, is 

C (-l)p(k)+p(m)+p(n) Ur(m, n) Ui(k, n) = Ui(m, k )  (6) 
n 

where p ( n ) = O  ( 1 )  if ( l r - n O n )  occurs in the symmetric (antisymmetric) part of the 
Kronecker square (if) ' .  The parity function p (  n )  does not simply alternate as n increases 
in unit steps: it turns out that p ( n )  = O  for n =0, 3, 4 , 7 , .  . . , and p ( n )  = 1 for n = 1,  2, 
5,  6 , .  . . That is, 

(-1)""' = 2'12 Re[exp($Nv)]. 
The introduction of the exponential function does not complicate matters too much 
because we can incorporate it into the analysis by means of such equations as 

(7) 
where 9LK( a, p, y )  is the full three-dimensional rotation matrix corresponding to the 
Euler angles a, p, and y (Brink and Satchler 1968, P 2.4). On substituting the d 
functions for the U functions in equation (6), we get after some manipulation (in 
which the evenness of M - K and oddness of M + K is used) the result 

exp($Ng)dKN 1+1/2 ( ~ v )  1 = 9cA/2(-;v, -iv, 0) 

9 ~ ~ 2 < o , + v , o ) 9 ~ ~ ~ 2 ( - f v ,  - i?r ,O)= 9 y ( - & r ,  -4v,$v). (8) 
N 

Thus Racah's back-coupling relation for S 0 ( 2 1 +  1 )  corresponds to the statement that 
two successive rotations in SO(3) characterised by the Euler triads ( - {v,  - fv ,  0) and 
(0, fw, 0) are equivalent to a single rotation for which (a, p, y )  = (-&r, -fv, iv) .  

It is interesting to note that for SO(3) Edmonds (1957, equation A2.2) has given 
the approximate formula 

U(' 
j L-6  S + E  

where J, S, L >> 161, 1 ~ 1 ,  and where f#J satisfies the equation 
cos 9 = [ J ( J  + 1) - S(S+ 1 )  - L ( L +  1)]/2[S(S+ l )L(L+ 1)]"2 
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In this case the Racah back-coupling relation for SO(3) turns out to be equivalent to 
the non-controversial statement that the interior angles of a plane triangle whose sides 
are approximately J + 5, S + f, and L + 4 add up to T. 

New 6-j symbols for S0(21+ 1 )  can be produced by generalising the Biedenharn- 
Elliott sum rule (Edmonds 1957, equation 6.2.12). Writing W, for (l'-xOx), we have 

C [D(Wn)1-"2u/(m, n)u/(r, n ) u / ( r ,  n) 
n 

= [ D (  W,)D( W,)D( W,)]1'2( w m  wr wt}2. (f') (4') (i') (9) 

The 6-j symbol in this equation vanishes unless W,,, x W, x W, contains the identity 
(0'). For example, the entries in table 1 for SO(7) can be used to show that 

}=0 (110) (110) (100) 
(111) (111) (111) 222  2 2 2  2 2 2  

a result that must follow because ( 1  x (100) does not contain (000) (see Wybourne 
1970, table D-4). The substitution of d functions for the U functions in equation (9) 
leads to previously unsuspected relations satisfied by rotation matrices for which 

Having said all this, the problem remains as to why equation ( 1 )  has the form it 
does. The derivation given above, although not particularly intricate, gives no clue as 
to the final outcome. Why, in particular, should the d function have a rank of I + ; ?  
Although there is nothing in the recoupling coefficient (3) to suggest such a rank, we 
note that the maximum spin S occurring in the electronic configurations I" (0 s U s 41 + 
2) is precisely 1 + i. For example, ' S  is the term of maximum multiplicity in the atomic 
f shell. However, the relevant angular momentum vector for us is not S but rather the 
sum S +  Q (= T, say), where Q is the quasispin (Judd 1967). Since ' S  occurs only 
once in the f shell it is a quasispin singlet, so T = S = 5 in this case. It is known that 
the states of the atomic 1 shell can be formed by factorising both the spin-up and 
spin-down spaces into two parts, each labelled by (i') (Armstrong and Judd 1970). 
Thus an S state belonging to (0') can be written in the coupled form 

(a, P, Y) = (0, 47G 0). 

I ( ( i ' , A  (i ')J(l'-non),  ( ( i ' ) ~ ( f ' ) ~ ) ( l ' - n o n ) ,  (0')) ( 1 1 )  

where is the primitive spinor representation of the group S0,(21+ 1 )  whose 
generators ( t3tt3)ck) (with k odd) are built from the quasiparticle creation and annihila- 
tion operators et. From their definition in terms of the standard annihilation and 
creation operators ( a  and at) for the electrons (Armstrong and Judd 1970, equation 
l ) ,  it is straightforward to show that, under the action of exp(ii.rrT,), we have A +. -v, 
p + p, v + A and t+. 5. The interchange of A and v in the ket( 1 1 )  can be accomplished 
by an expansion that involves a generalised 9-j symbol with one argument equal to 
(0'). With the help of an analogue of equation (6.4.14) of Edmonds (1957), this reduces 
to precisely the U function of equation ( 1 ) .  On the other hand, we can apply exp(fiTT,,) 
directly to the ket ( 1 1 ) .  It is not difficult to show that the states of the atomic 1 shell 
belonging to (0') of S0(21+ 1 )  (and formed as in the ket ( 1  1 ) )  possess both T and Mr 
(the eigenvalue of T,) as good quantum numbers. We have already seen that T = 
for the f shell: in general it is /if. The first representation (l'-"O") in the ket ( 1 1 )  
corresponds to either 1 - n or 1 + n + 1 spin-up electrons; the second to either 1 - n or 
1 + n + 1 spin-down electrons (a quadruple ambiguity originating in table I of Racah 
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(1949)). Since MQ (the eigenvalue of 0,) is given in terms of the total number of 
electrons U by -f(21+ 1 - U )  (Judd 1967, p 41), we get 

MT = Ms + MQ 

= f( I - n )  - f( I - n) - f ( 2 I +  1 - 21 + 2n) = -( n + ;) (12) 

together with three other possibilities, all of which are of the form *(?I+;), that is, 
*(-l)"N, from equations (2).  The effect of the operator exp(fi.rrT,) on the kets of the 
type IT, MT) is represented by d L T M ; ( f r ) ,  which, in view of equation (12) and its 
three companions, corresponds precisely to the d function of equation ( 1 ) .  The factor 
2'12 appearing there is related to the fact that two independent kets of the type ( 1 1 )  
correspond to a specified IT, MT). The ambiguities in sign in the connections M r - N  
and M k - M  lead at most to overall phase changes since dLN( i . r r )=  
(-l)r-Nd?MN(;.rr), etc. Different choices of phase could have been made at many 
points of the above analysis, but such distractions have been avoided for the sake of 
simplicity. As a final remark, it should be noted that equation ( 1 )  presumably exists 
in its own right and not as a consequence of the existence of electrons in atoms with 
angular momentum quantum numbers I ;  but the insight that such an interpretation 
affords is very gratifying. 

Partial support of the above work by the United States National Science Foundation 
is acknowledged. 
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